Multi-Objective Combinatorial Optimization Problems Homework

  • 1.

    F. Ben Abdelaziz, J. Chaouachi, and S. Krichen. A hybrid heuristic for multiobjective knapsack problems. In S. Voss et al., editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 205212. Kluwer, Dordrecht, 1999.Google Scholar

  • 2.

    P. Agrell, M. Sun, and A. Stam. A tabu search multi-criteria decision model for facility location planning. In Proceedings of the 1997 DSI Annual Meeting, 2:908–910. Atlanta, 1997.Google Scholar

  • 3.

    M.J. Alves and J. Climaco. An interactive method for 0–1 multiobjective problems using simulated annealing and tabu search. J. Heuristics,6(3):385403, 2000.Google Scholar

  • 4.

    V. Barichard and J.K. Hao. Un algorithme hybride pour le problème de sac à dos multi-objectifs. Huitièmes Journées Nationales sur la Résolution Pratique de Problèmes NP-Complets JNPC’2002, Nice, France, 27–29 May 2002.Google Scholar

  • 5.

    A. Baykasoglu. MOAPPS 1.0: Aggregate production planning using the multiple objective tabu search. Int. J. Prod. Res., 39 (16): 3685–3702, 2001.MATHCrossRefGoogle Scholar

  • 6.

    A. Baykasoglu, S. Owen, and N. Gindy. A taboo search based approach to find the Pareto optimal set in multiple objective optimisation. J. Eng. Optim., 31: 731–748, 1999.CrossRefGoogle Scholar

  • 7.

    J.E. Beasley, T.J. Chang, N. Meade, and Y.M. Sharaiha. Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res.,27(13):12711302,2000.Google Scholar

  • 8.

    R. Beausoleil. Multiple criteria scatter search. In MIC’2001–4th Metaheuristics International Conference, pages 539–543. Porto, Portugal, July 16–20, 2001.Google Scholar

  • 9.

    E.K. Burke, Y. Bykov, and S. Petrovic. A multi-criteria approach to examination timetabling. In E.K. Burke and W. Erben, editors, The Practice and Theory of Automated Timetabling III, Lect. Notes Comput. Sci. 2079:118–131. Springer, Berlin, 2000.Google Scholar

  • 10.

    P.M. Camerini, G. Galbiati, and F. Maffioli. The complexity of multi-constrained spanning tree problems. In L. Lovasz, editor, Theory of Algorithms, pages 53–101. North-Holland, Amsterdam, 1984.Google Scholar

  • 11.

    S. Chung, H.W. Harnacher, F. Maffioli, and K.G. Murty. Note on combinatorial optimization with max-linear objective functions. Discrete Appl. Math., 42: 139–145, 1993.MathSciNetMATHCrossRefGoogle Scholar

  • 12.

    C.A. Coello. A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and Information Systems, 1 (3): 269–308, 1999.Google Scholar

  • 13.

    C.A. Coello. An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys, 32 (2): 109–143, 2000.CrossRefGoogle Scholar

  • 14.

    H.W. Corley. Efficient spanning trees. J. Optim. Theory Appl., 45 (3): 481–485, 1985.MathSciNetMATHCrossRefGoogle Scholar

  • 15.

    P. Czyzak and A Jaszkiewicz. Pareto simulated annealing–A metaheuristic technique for multiple objective combinatorial optimization. J. Multi-Criteria Decis. Anal., 7 (1): 34–47, 1998.MATHCrossRefGoogle Scholar

  • 16.

    G. Dahl, K. Jörnsten, and A. Lokketangen. A tabu search approach to the channel minimization problem. In Proceedings of the International Conference on Optimization Techniques and Applications (ICOTA ’85), 369–377. World Scientific, Singapore, 1995.Google Scholar

  • 17.

    H.M. Dathe. Zur Lösung des Zuordnungsproblems bei zwei Zielgrößen. Z. Oper. Res., 22: 105–118, 1978.MATHGoogle Scholar

  • 18.

    F. Degoutin and X. Gandibleux. Un retour d’expérience sur la résolution de problèmes combinatoires bi-objectifs. Programmation Mathématique Multi-Objectif PM2O V Meeting, Angers, France, 17 May 2002.Google Scholar

  • 19.

    X. Delorme, J. Rodriguez, and X. Gandibleux. Heuristics for railway infrastructure saturation. In ATMOS 2001 Proceedings. Electronic Notes in Theoretical Computer Science 50:41–55. URL: http://www.elsevier.nl/locate/entcs/volume50.html. Elsevier Science, Amsterdam, 2001.Google Scholar

  • 20.

    M. Ehrgott. Approximation algorithms for combinatorial multicriteria optimization problems. Int. Transac. Oper. Res., 7: 5–31, 2000.MathSciNetCrossRefGoogle Scholar

  • 21.

    M. Ehrgott. Multiple Criteria Optimization - Classification and Methodology. Shaker, Aachen, 1997.Google Scholar

  • 22.

    M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 2000.Google Scholar

  • 23.

    M. Ehrgott and X. Gandibleux. Bounds and bound sets for biobjective combinatorial optimization problems. In M. Köksalan and S. Zionts, editors, Multiple Criteria Decision Making in the New Millenium, Lect. Notes Econ. Math. Syst. 507:242–253. Springer, Berlin, 2001.Google Scholar

  • 24.

    M. Ehrgott and X. Gandibleux, editors. Multiple Criteria Optimization - State of the Art Annotated Bibliographic Surveys, volume 52 of Kluwer’s International Series in Operations Research and Management Science. Kluwer, Norwell, 2002.Google Scholar

  • 25.

    M. Ehrgott and D.M. Ryan. Constructing robust crew schedules with bicriteria optimization. J. Multi Criteria Decis. Anal. in print, 2003.Google Scholar

  • 26.

    M. Ehrgott and A.J.V. Skriver. Solving biobjective combinatorial max-ordering problems by ranking methods and a two-phases approach. Eur. J. Oper. Res., in print, 2003.Google Scholar

  • 27.

    M. Ehrgott and D. Tenfelde-Podehl. Computation of ideal and Nadir values and implications for their use in MCDM methods. Eur. J. Oper. Res., in print, 2003.Google Scholar

  • 28.

    M. Ehrgott and D. Tenfelde-Podehl. A level set method for multiobjective combinatorial optimization: Application to the quadratic assignement problem. Technical report, Universität Kaiserslautern, 2002.Google Scholar

  • 29.

    N. El-Sherbeny. Resolution of a vehicle routing problem with a multi-objective simulated annealing method. PhD thesis, Université de Mons-Hainaut, 2001.Google Scholar

  • 30.

    V.A. Emelichev and V.A. Perepelitsa. On cardinality of the set of alternatives in discrete many-criterion problems. Discrete Mathematics and Applications, 2 (5): 461–471, 1992.MathSciNetCrossRefGoogle Scholar

  • 31.

    P. Engrand. A multi-objective approach based on simulated annealing and its application to nuclear fuel management. In Proceedings of the 5th ASME/SFEN/JSME International Conference on Nuclear Engineering. Icone 5, Nice, France 1997, pages 416–423. American Society of Mechanical Engineers, New York, 1997.Google Scholar

  • 32.

    C.M. Fonseca and P.J. Fleming. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 416–423. Morgan Kaufman, San Francisco, 1993.Google Scholar

  • 33.

    C.M. Fonseca and P.J. Fleming. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3 (1): 1–16, 1995.CrossRefGoogle Scholar

  • 34.

    X. Gandibleux and A. Fréville. Tabu search based procedure for solving the 0/1 multiobjective knapsack problem: The two objective case. J. Heuristics, 6 (3): 361–383, 2000.MATHCrossRefGoogle Scholar

  • 35.

    X. Gandibleux, N. Mezdaoui, and A. Fréville. A tabu search procedure to solve multiobjective combinatorial optimization problems. In R. Caballero, F. Ruiz, and R. Steuer, editors, Advances in Multiple Objective and Goal Programming, Lect. Notes Econ. Math. Syst. 455:291–300. Springer, Berlin, 1997.Google Scholar

  • 36.

    X. Gandibleux, H. Morita, and N. Katoh. A genetic algorithm for 0–1 multiobjective knapsack problem. In International Conference on Nonlinear Analysis and Convex Analysis (NACA98) Proceedings, July 28–31 1998, Niigata, Japan, 4 pages, 1998.Google Scholar

  • 37.

    X. Gandibleux, H. Morita, and N. Katoh. The supported solutions used as a genetic information in a population heuristic. In E. Zitzler et al., editors, First International Conference on Evolutionary Multi-Criterion Optimization, Lect. Notes Comput. Sci., 1993:429–442. Springer, Berlin, 2001.Google Scholar

  • 38.

    X. Gandibleux, D. Vancoppenolle, and D. Tuyttens. A first making use of GRASP for solving MOCO problems. Technical report, University of Valenciennes, France, 1998.Google Scholar

  • 39.

    J.M. Godart. Problèmes d’optimisation combinatoire à caractère économique dans le secteur du tourisme (organisation de voyages). PhD thesis, Université de Mons-Hainaut, 2001.Google Scholar

  • 40.

    D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, 1989.MATHGoogle Scholar

  • 41.

    M. Gravel, W.L. Price, and C. Gagné. Scheduling continuous casting of aluminium using a multiple-objective ant colony optimization metaheuristic. Eur. J. Oper. Res., 143 (1): 218–229, 2002.MATHCrossRefGoogle Scholar

  • 42.

    H.W. Harnacher and G. Ruhe. On spanning tree problems with multiple objectives. Ann. Oper. Res., 52: 209–230, 1994.MathSciNetCrossRefGoogle Scholar

  • 43.

    M. P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations to the non-dominated set. Technical report IMM-REP-1998–7, Technical University of Denmark, 1998.Google Scholar

  • 44.

    M.P. Hansen. Tabu search for multiobjective combinatorial optimization: TAMOCO. Control and Cybernetics, 29 (3): 799–818, 2000.MathSciNetMATHGoogle Scholar

  • 45.

    P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making Theory and Application, Lect. Notes Econ. Math. Syst., 177:109–127. Springer, Berlin, 1979.Google Scholar

  • 46.

    A. Hertz, B. Jaumard, C. Ribeiro, and W. Formosinho Filho. A multi-criteria tabu search approach to cell formation problems in group technology with multiple objectives. RA IRO–Rech. Opér., 28 (3): 303–328, 1994.MATHGoogle Scholar

  • 47.

    J. Horn, N. Nafpliotis, and D.E. Goldberg. A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, 1:82–87. IEEE Service Center, Piscataway, 1994.Google Scholar

  • 48.

    S. Iredi, D. Merkle, and M. Middendorf. Bi-criterion optimization with multi colony ant algorithms. In E. Zitzler et al., editors, First International Conference on Evolutionary Multi-Criterion Optimization, Lect. Notes Comput. Sci., 1993:359–372. Springer, Berlin, 2001.Google Scholar

  • 49.

    A. Jaszkiewicz. Multiple objective genetic local search algorithm. In M. Köksalan and S. Zionts, editors, Multiple Criteria Decision Making in the New Millennium, Lect. Notes Econ. Math. Syst., 507:231–240. Springer, Berlin, 2001.Google Scholar

  • 50.

    D. Jones, S.K. Mirrazavi, and M. Tamiz. Multi-objective meta-heuristics: An overview of the current state-of-the-art. Eur. J. Oper. Res., 137 (1): 1–9, 2002.MATHCrossRefGoogle Scholar

  • 51.

    B. Kim, E.S. Gel, W.M. Carlyle, and J.W. Fowler. A new technique to compare algorithms for bi-criteria combinatorial optimization problems. In M. Köksalan and S. Zionts, editors, Multiple Criteria Decision Making in the New Millenium, Lect. Notes Econ. Math. Syst., 507:113–123. Springer,Berlin, 2001.Google Scholar

  • 52.

    K. Klamroth and M. Wiecek. A time-dependent single-machine scheduling knapsack problem. Eur. J. Oper. Res., 135: 17–26, 2001.MathSciNetMATHCrossRefGoogle Scholar

  • 53.

    E. Koktener and M. Köksalan. A simulated annealing approach to bicriteria scheduling problems on a single machine. J. Heuristics, 6 (3): 311–327, 2000.CrossRefGoogle Scholar

  • 54.

    M.M. Kostreva and M.M. Wiecek. Time dependency in multiple objective dynamic programming. J. Math. Anal. Appl., 173 (1): 289–307, 1993.MathSciNetMATHCrossRefGoogle Scholar

  • 55.

    H. Lee and P.S. Pulat. Bicriteria network flow problems: Integer case. Eur. J. Oper. Res., 66: 148–157, 1993.MATHCrossRefGoogle Scholar

  • 56.

    T. Loukil Moalla, J. Teghem, and P. Fortemps. Solving multiobjective scheduling problems with tabu search. In Workshop on Production Planning and Control, pages 18–26. Facultés Universitaires Catholiques de Mons, 2000.Google Scholar

  • 57.

    P. Lucié and D.Teodorovié. Simulated annealing for the multi-objective aircrew rostering problem. Transportation Research A: Policy and Practice, 33 (1): 19–45, 1999.CrossRefGoogle Scholar

  • 58.

    B. Malakooti, J. Wang, and E.C. Tandler. A sensor-based accelerated approach for multi-attribute machinability and tool life evaluation. Int. J. Prod. Res., 28: 2373, 1990.CrossRefGoogle Scholar

  • 59.

    E.Q.V. Martins. On a multicriteria shortest path problem. Eur. J. Oper. Res., 16: 236–245, 1984.MATHCrossRefGoogle Scholar

  • 60.

    E.Q.V. Martins and J.C.N. Climaco. On the determination of the nondominated paths in a multiobjective network problem. Methods Oper. Res., 40: 255258, 1981.Google Scholar

  • 61.

    P.R. McMullen and G.V. Frazier. Using simulated annealing to solve a multi-objective assembly line balancing problem with parallel workstations. Int. J. Prod. Res., 36 (10): 2717–2741, 1999.CrossRefGoogle Scholar

  • 62.

    I.I. Melamed and I.K. Sigal. A computational investigation of linear parametrization of criteria in multicriteria discrete programming. Comp. Math. Math. Phys., 36 (10): 1341–1343, 1996.MathSciNetMATHGoogle Scholar

  • 63.

    T. Murata and H. Ishibuchi. MOGA: Multi-objective genetic algorithms. In Proceedings of the 2nd IEEE International Conference on Evolutionary Computing, pages 289–294. IEEE Service Center, Piscataway, 1995.Google Scholar

  • 64.

    I. Murthy and S.S. Her. Solving min-max shortest-path problems on a network. Nay. Res. Logist., 39: 669–683, 1992.MathSciNetMATHCrossRefGoogle Scholar

  • 65.

    D. Nam and C.H. Park. Multiobjective simulated annealing: A comparative study to evolutionary algorithms. International Journal of Fuzzy Systems, 2 (2): 87–97, 2000.Google Scholar

  • 66.

    G. Parks and A. Suppapitnarm. Multiobjective optimization of PWR reload core designs using simulated annealing. In Proceedings of the International Conference on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, 2:1435–1444, Madrid, 1999.Google Scholar

  • 67.

    R.M. Ramos, S. Alonso, J. Sicilia, and C. Gonzalez. The problem of the optimal biobjective spanning tree. Eur. J. Oper. Res., 111: 617–628, 1998.MATHCrossRefGoogle Scholar

  • 68.

    C. Reeves. Modern Heuristic Techniques for Combinatorial Problems. McGrawHill, London, 1995.Google Scholar

  • 69.

    M.J. Rosenblatt and Z. Sinuany-Stern. Generating the discrete efficient frontier to the capital budgeting problem. Oper. Res., 37 (3): 384–394, 1989.MATHCrossRefGoogle Scholar

  • 70.

    G. Ruhe. Complexity results for multicriteria and parametric network flows using a pathological graph of Zadeh. Z. Oper. Res., 32: 59–27, 1988.MathSciNetGoogle Scholar

  • 71.

    S. Sayin. Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Math. Prog., 87: 543–560, 2000.MathSciNetMATHCrossRefGoogle Scholar

  • 72.

    J.D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. PhD thesis, Vanderbilt University, Nashville, 1984.Google Scholar

  • 73.

    J.D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. In J.J. Grefenstette, editor, Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pages 93–100. Lawrence Erlbaum, Pittsburgh, 1985.Google Scholar

  • 74.

    P. Serafini. Some considerations about computational complexity for multi objective combinatorial problems. In J. Jahn and W. Krabs, editors, Recent advances and historical development of vector optimization, Lect. Notes Econ. Math. Syst., 294:222–232. Springer, Berlin, 1986.Google Scholar

  • 75.

    P. Serafini. Simulated annealing for multiobjective optimization problems. In Proceedings of the 10th International Conference on Multiple Criteria Decision Making, Taipei-Taiwan, 1:87–96, 1992.Google Scholar

  • 76.

    P.S. Shelokar, S. Adhikari, R. Vakil, V.K. Jayaraman, and B.D. Kulkarni. Multiobjective ant algorithm for continuous function optimization: Combination of strength Pareto fitness assignment and thermo-dynamic clustering. Found. Comp. Decis. Sci., 25 (4): 213–230, 2000.Google Scholar

  • 77.

    N. Srinivas and K. Deb. Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation, 2 (3): 221–248, 1994.CrossRefGoogle Scholar

  • 78.

    M. Sun. Applying tabu search to multiple objective combinatorial optimization problems. In Proceedings of the 1997 DSI Annual Meeting, 2:945–947. Atlanta, 1997.Google Scholar

  • 79.

    M. Sun, A. Stam, and R. Steuer. Solving multiple objective programming problems using feed-forward artificial neural networks: The interactive FFANN procedure. Manage. Sci., 42 (6): 835–849, 1996.MATHCrossRefGoogle Scholar

  • 80.

    M. Sun, A. Stam, and R. Steuer. Interactive multiple objective programming using Tchebycheff programs and artificial neural networks. Comput. Oper. Res., 27: 601–620, 2000.MATHCrossRefGoogle Scholar

  • 81.

    B. Thiongane, V. Gabrel, D. Vanderpooten, and S. Bibas. Le problème de la recherche de chemins efficaces dans un réseau de télécommunications. Francoro III, Québec, May 9–12, 2001.Google Scholar

  • 82.

    M. Thompson. Application of multi objective evolutionary algorithms to analogue filter tuning. In E. Zitzler et al., editors, First International Conference on Evolutionary Multi-Criterion Optimization, Lect. Notes Comput. Sci., 1993:546–559. Springer, Berlin, 2001.Google Scholar

  • 83.

    E.L. Ulungu. Optimisation combinatoire multicritère: Détermination de l’ensemble des solutions efficaces et méthodes interactives. PhD thesis, Université de Mons-Hainaut, 1993.Google Scholar

  • 84.

    E.L. Ulungu and J. Teghem. The two-phases method: An efficient procedure to solve bi-objective combinatorial optimization problems. Found. Comput. Decis. Sci., 20 (2): 149–165, 1994.MathSciNetGoogle Scholar

  • 85.

    A. Vainshtein. Vector shortest path problem in 1, norm. In Simulation and Optimization of Complex Structure Systems, pages 138–144. Omsk, 1987.Google Scholar

  • 86.

    A. Viana and J. Pinho de Sousa. Using metaheuristics in multiobjective ressource constrained project scheduling. Eur. J. Oper. Res., 120 (2): 359–374, 2000.MATHCrossRefGoogle Scholar

  • 87.

    M. Visée, J. Teghem, M. Pirlot, and E.L. Ulungu. Two-phases method and branch and bound procedures to solve the bi-obective knapsack problem. J. Glob. Optim., 12: 139–155, 1998.MATHCrossRefGoogle Scholar

  • 88.

    D.J. White. The set of efficient solutions for multiple objective shortest path problems. Comp. Oper. Res., 9 (2): 101–107, 1987.CrossRefGoogle Scholar

  • 89.

    E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8 (2): 173–195, 2000.CrossRefGoogle Scholar

  • 90.

    E. Zitzler and L. Thiele. An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical report 43, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, 1998.Google Scholar

  • 91.

    E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3 (4): 257–271, 1999.CrossRef

  • 1.

    Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation. In: The New Experimentalism. Springer, Heidelberg (2006)Google Scholar

  • 2.

    Basseur, M., Zitzler, E.: Handling Uncertainty in Indicator-Based Multiobjective Optimization. International Journal of Computational Intelligence Research 2(3), 255–272 (2006)MathSciNetCrossRefGoogle Scholar

  • 3.

    Basseur, M., Zitzler, E.: A Preliminary Study on Handling Uncertainty in Indicator-Based Multiobjective Optimization. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 727–739. Springer, Heidelberg (2006)CrossRefGoogle Scholar

  • 4.

    Beausoleil, R.P.: “MOSS” multiobjective scatter search applied to non-linear multiple criteria optimization. European Journal of Operational Research 169(2), 426–449 (2006)MATHCrossRefMathSciNetGoogle Scholar

  • 5.

    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)MATHCrossRefGoogle Scholar

  • 6.

    Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)CrossRefGoogle Scholar

  • 7.

    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)CrossRefGoogle Scholar

  • 8.

    Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)MATHGoogle Scholar

  • 9.

    Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, USA (1998)Google Scholar

  • 10.

    Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto Envelope-based Selection Algorithm for Multiobjective Optimization. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000)CrossRefGoogle Scholar

  • 11.

    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)MATHGoogle Scholar

  • 12.

    Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)CrossRefGoogle Scholar

  • 13.

    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar

  • 14.

    Dhaenens, C., Lemesre, J., Talbi, E.-G.: K-PPM: A New Exact Method to solve Multi-Objective Combinatorial Optimization Problems. European Journal of Operational Research 200(1), 45–53 (2010)CrossRefMATHMathSciNetGoogle Scholar

  • 15.

    Edgeworth, F.Y.: Mathematical Psychics. P. Keagan, London (1881)Google Scholar

  • 16.

    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall/CRC, Boca Raton (1994)Google Scholar

  • 17.

    Ehrgott, M.: Approximation algorithms for combinatorial multicriteria optimization problems. International Transactions in Operational Research 7, 5–31 (2000)CrossRefMathSciNetGoogle Scholar

  • 18.

    Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)MATHGoogle Scholar

  • 19.

    Ehrgott, M., Gandibleux, X.: A Survey and Annotated Bibliography of Multiobjective Combinatorial Optimization. OR Spektrum 22, 425–460 (2000)MATHMathSciNetGoogle Scholar

  • 20.

    Ehrgott, M., Gandibleux, X.: Approximative Solution Methods for Multiobjective Combinatorial Optimization. Top 12(1), 1–89 (2004)MATHCrossRefMathSciNetGoogle Scholar

  • 21.

    Ehrgott, M., Gandibleux, X.: Hybrid Metaheuristics for Multi-objective Combinatorial Optimization. In: Blum, C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics. Studies in Computational Intelligence, vol. 114, pp. 221–259. Springer, Heidelberg (2008)CrossRefGoogle Scholar

  • 22.

    Emmerich, M., Beume, N., Naujoks, B.: An EMO Algorithm Using the Hypervolume Measure as Selection Criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)Google Scholar

  • 23.

    Farhang-Mehr, A., Azarm, S.: Diversity Assessment of Pareto Optimal Solution Sets: An Entropy Approach. In: Congress on Evolutionary Computation (CEC 2002), Piscataway, New Jersey, May 2002, vol. 1, pp. 723–728. IEEE Service Center (2002)Google Scholar

  • 24.

    Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, University of Illinois at Urbana-Champaign, pp. 416–423. Morgan Kauffman Publishers, San Francisco (1993)Google Scholar

  • 25.

    Fonseca, C.M., Fleming, P.J.: On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature—PPSN IV, September 1996. LNCS, pp. 584–593. Springer, Berlin (1996)CrossRefGoogle Scholar

  • 26.

    Freschi, F., Coello Coello, C.A., Repetto, M.: Multiobjective Optimization and Artificial Immune Systems: A Review. In: Mo, H. (ed.) Handbook of Research on Artificial Immune Systems and Natural Computing: Applying Complex Adaptive Technologies, vol. 4, pp. 1–21. Medical Information Science Reference, Hershey (2009)Google Scholar

  • 27.

    Gandibleux, X., Freville, A.: Tabu Search Based Procedure for Solving the 0-1 Multi-Objective Knapsack Problem: The Two Objectives Case. Journal of Heuristics 6(3), 361–383 (2000)MATHCrossRefGoogle Scholar

  • 28.

    García-Martínez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP. European Journal of Operational Research 180(1), 116–148 (2007)MATHCrossRefGoogle Scholar

  • 29.

    Goh, C.-K., Ong, Y.-S., Tan, K.C. (eds.): Multi-Objective Memetic Algorithms. Springer, Berlin (2009)MATHGoogle Scholar

  • 30.

    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)MATHGoogle Scholar

  • 31.

    Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 213–225. Springer, Heidelberg (2001)Google Scholar

  • 32.

    Hansen, M.P.: Metaheuristics for multiple objective combinatorial optimization. PhD thesis, Institute of Mathematical Modelling, Technical University of Denmark (March 1998)Google Scholar

  • 33.

    Hertz, A., Jaumard, B., Ribeiro, C.C., Formosinho Filho, W.P.: A multi-criteria tabu search approach to cell formation problems in group technology with multiple objectives. RAIRO/Operations Research 28(3), 303–328 (1994)MATHMathSciNetGoogle Scholar

  • 34.

    Ishibuchi, H., Murata, T.: Multi-Objective Genetic Local Search Algorithm and Its Application to Flowshop Scheduling. IEEE Transactions on Systems, Man and Cybernetics—Part C: Applications and Reviews 28(3), 392–403 (1998)CrossRefGoogle Scholar

  • 35.

    Jourdan, L., Basseur, M., Talbi, E.-G.: Hybridizing exact methods and metaheuristics: A taxonomy. European Journal of Operational Research 199(3), 620–629 (2009)MATHCrossRefMathSciNetGoogle Scholar

  • 36.

    Khabzaoui, M., Dhaenens, C., Talbi, E.-G.: Combining evolutionary algorithms and exact approaches for multi-objective knowledge discovery. RAIRO Oper. Res (EDP Sciences) 42, 69–83 (2008)MATHCrossRefMathSciNetGoogle Scholar

  • 37.

    Knowles, J.: A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers. In: Fifth International Conference on Intelligent Systems Design and Applications (ISDA 2005), pp. 552–557. IEEE, Los Alamitos (2005)CrossRefGoogle Scholar

  • 38.

    Knowles, J., Corne, D.: On Metrics for Comparing Nondominated Sets. In: Congress on Evolutionary Computation (CEC 2002), Piscataway, New Jersey, May 2002, vol. 1, pp. 711–716. IEEE Service Center (2002)Google Scholar

  • 39.

    Knowles, J., Corne, D.: Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects. In: William, E., Hart, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms. Studies in Fuzziness and Soft Computing, vol. 166, pp. 313–352. Springer, Heidelberg (2005)CrossRefGoogle Scholar

  • 40.

    Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. In: Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland, February 2006, vol. 214 (2006) (revised version)Google Scholar

  • 41.

    Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)CrossRefGoogle Scholar

  • 42.

    Knowles, J.D., Corne, D.W., Oates, M.J.: On the Assessment of Multiobjective Approaches to the Adaptive Distributed Database Management Problem. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature (PPSN VI), September 2000, pp. 869–878. Springer, Berlin (2000)CrossRefGoogle Scholar

  • 43.

    Künzli, S., Bleuler, S., Thiele, L., Zitzler, E.: A Computer Engineering Benchmark Application for Multiobjective Optimizers. In: Coello Coello, C.A., Lamont, G.B. (eds.) Applications of Multi-Objective Evolutionary Algorithms, pp. 269–294. World Scientific, Singapore (2004)Google Scholar

  • 44.

    Laumanns, M., Zitzler, E., Thiele, L.: On the Effects of Archiving, Elitism, and Density Based Selection in Evolutionary Multi-objective Optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 181–196. Springer, Heidelberg (2001)Google Scholar

  • 45.

    Lemesre, J., Dhaenens, C., Talbi, E.-G.: An exact parallel method for a bi-objective permutation flowshop problem. European Journal of Operational Research 177(3), 1641–1655 (2007)MATHCrossRefMathSciNetGoogle Scholar

  • 46.

    Lemesre, J., Dhaenens, C., Talbi, E.-G.: Parallel partitioning method (PPM): A new exact method to solve bi-objective problems. Computers & Operations Research 34(8), 2450–2462 (2007)MATHCrossRefGoogle Scholar

  • 47.

    Liefooghe, A., Jourdan, L., Basseur, M., Talbi, E.-G., Burke, E.K.: Metaheuristics for the Bi-objective Ring Star Problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 206–217. Springer, Heidelberg (2008)CrossRefGoogle Scholar

  • 48.

    Lučić, P., Teodorović, D.: Simulated annealing for the multi-objective aircrew rostering problem. Transportation Research Part A 33, 19–45 (1999)Google Scholar

  • 49.

    Meunier, H., Talbi, E.-G., Reininger, P.: A Multiobjective Genetic Algorithm for Radio Network Optimization. In: 2000 Congress on Evolutionary Computation, Piscataway, New Jersey, July 2000, vol. 1, pp. 317–324. IEEE Service Center (2000)Google Scholar

  • 50.

    Mezura-Montes, E., Reyes-Sierra, M., Coello Coello, C.A.: Multi-Objective Optimization using Differential Evolution: A Survey of the State-of-the-Art. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution, pp. 173–196. Springer, Berlin (2008)CrossRefGoogle Scholar

  • 51.

    Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)MATHGoogle Scholar

  • 52.

    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization. Algorithms and Complexity. Dover Publications, Inc., New York (1998)Google Scholar

  • 53.

    Pareto, V.: Cours D’Economie Politique, vol. I, II. F. Rouge, Lausanne (1896)Google Scholar

  • 54.

    Przybylski, A., Gandibleux, X., Ehrgott, M.: Seek and cut algorithm computing minimal and maximal complete efficient solution sets for the biobjective assignment problem. In: 6th International Conference on Multi-Objective Programming and Goal Programming conf. (MOPGP 2004), Tunisia (April 2004)Google Scholar

  • 55.

    Reyes-Sierra, M., Coello Coello, C.A.: Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. International Journal of Computational Intelligence Research 2(3), 287–308 (2006)MathSciNetGoogle Scholar

  • 56.

    Rudolph, G.: On a Multi-Objective Evolutionary Algorithm and Its Convergence to the Pareto Set. In: Proceedings of the 5th IEEE Conference on Evolutionary Computation, Piscataway, New Jersey, pp. 511–516. IEEE Press, Los Alamitos (1998)Google Scholar

  • 57.

    Rudolph, G., Agapie, A.: Convergence Properties of Some Multi-Objective Evolutionary Algorithms. In: Proceedings of the 2000 Conference on Evolutionary Computation, Piscataway, New Jersey, July 2000, vol. 2, pp. 1010–1016. IEEE Press, Los Alamitos (2000)Google Scholar

  • 58.

    David Schaffer, J.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum, Mahwah (1985)Google Scholar

  • 59.

    Schott, J.R.: Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts (May 1995)Google Scholar

  • 60.

    Talbi, E.-G.: Metaheuristics. In: From Design to Implementation. Wiley, USA (2009)Google Scholar

  • 61.

    Ulungu, E.L., Teghem, J.: The two phases method: An efficient procedure to solve bi-objective combinatorial optimization problems. Foundation of Computing and Decision Sciences 20(2), 149–165 (1995)MATHMathSciNetGoogle Scholar

  • 62.

    Valenzuela, C.L.: A Simple Evolutionary Algorithm for Multi-Objective Optimization (SEAMO). In: Congress on Evolutionary Computation (CEC 2002), Piscataway, New Jersey, May 2002, vol. 1, pp. 717–722. IEEE Service Center (2002)Google Scholar

  • 63.

    Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio (May 1999)Google Scholar

  • 64.

    Van Veldhuizen, D.A., Lamont, G.B.: On Measuring Multiobjective Evolutionary Algorithm Performance. In: 2000 Congress on Evolutionary Computation, Piscataway, New Jersey, July 2000, vol. 1, pp. 204–211. IEEE Service Center (2000)Google Scholar

  • 65.

    Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (November 1999)Google Scholar

  • 66.

    Zitzler, E., Künzli, S.: Indicator-based Selection in Multiobjective Search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)Google Scholar

  • 67.

    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100 (2002)Google Scholar

  • 68.

    Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar

  • 69.

    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)CrossRefGoogle Scholar

  • 0 thoughts on “Multi-Objective Combinatorial Optimization Problems Homework”

      -->

    Leave a Comment

    Your email address will not be published. Required fields are marked *